Topics in the November 2010 Exam Paper for CHEM1612

Click on the links for resources on each topic.

2010-N-2:

- Chemical Equilibrium
- Acids and Bases
- Chemical Kinetics
- Introduction to Chemical Energetics

2010-N-3:

- Introduction to Chemical Energetics
- Chemical Equilibrium

2010-N-4:

- Gas Laws
- Solutions

2010-N-5:

• Chemical Equilibrium

2010-N-6:

- Chemical Equilibrium
- Complexes

2010-N-7:

- Acids and Bases
- Solutions

2010-N-8:

• Acids and Bases

2010-N-9:

Radiochemistry

2010-N-10:

- Redox Reactions and Introduction to Electrochemistry
- Radiochemistry

2010-N-11:

• Redox Reactions and Introduction to Electrochemistry

2010-N-12:

• Complexes

2010-N-13:

• Chemical Kinetics

2010-N-14:

Solubility

• Complexes

2218(a)

THE UNIVERSITY OF SYDNEY <u>CHEM1612 - CHEMISTRY 1B (PHARMACY)</u>

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2010

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 17 and 24 are for rough work only.

OFFICIAL USE ONLY

Multiple choice section				
		Marks		
Pages	Max	Gaine	d	
2-9	28	/	/	
Short an	swer se	ection		
		Marks		
Page	Max	Gaine	d	Marker
10	6			
11	4			
12	5			

11	4		
12	5		
13	5		
14	4		
15	7		
16	8		
18	6		
19	7		
20	3		
21	7		
22	4		
23	6		
Total	72		
Check Total			

• Explain the following terms or concepts.		Marks 3
a) Lewis base		_
b) Le Châtelier's principle		-
c) Heterogeneous catalysis		
 A bar of hot iron with a mass of 1.000 kg into an insulated tank of water. The mass temperature was 25.00 °C. What will the when it has stabilised? (The specific heat 4.184 J g⁻¹ K⁻¹ and 0.4498 J g⁻¹ K⁻¹, response) 	and a temperature of 100.00 °C is plunged s of water was 2.000 kg and its initial temperature of the resulting system be t capacities of water and iron are ectively.)	3
	Answer:	

CHEM1612

• C	alculate ΔG°	for the reaction:	$2N_2O(g) + 3O_2(g)$	$g) \rightarrow 4NO_2(g)$	Marks 2
D	ata: 4N	$O(g) \rightarrow 2N_2O(g)$	+ $O_2(g)$	$\Delta G^{\circ} = -139.56 \text{ kJ mol}^{-1}$	
	2N	$O(g) + O_2(g) \rightarrow$	$2NO_2(g)$	$\Delta G^\circ = -69.70 \text{ kJ mol}^{-1}$	

Answer:

• Good wine will turn to vinegar if it is left exposed to air because the alcohol is oxidised to acetic acid. The equation for the reaction is:

 $CH_3CH_2OH(l) + O_2(g) \rightarrow CH_3COOH(l) + H_2O(l)$

Calculate ΔS° for this reaction in J K⁻¹ mol⁻¹.

Data:		S° (J K ⁻¹ mol ⁻¹)		S° (J K ⁻¹ mol ⁻¹)
	$C_2H_5OH(1)$	161	CH ₃ COOH(l)	160.
	O ₂ (g)	205.0	H ₂ O(l)	69.96

Answer:

2

Marks • A cylinder fitted with a piston contains 5.00 L of a gas at a pressure of 4.0×10^5 Pa. 3 The entire apparatus is maintained at a constant temperature of 25 °C. The piston is released and the gas expands against a pressure of 1.0×10^5 Pa. Assuming ideal gas behaviour, calculate the final volume occupied by the gas. Answer: Calculate the amount of work done by the gas expansion. Answer: • Isooctane, an important constituent of petrol, has a boiling point of 99.3 °C and an enthalpy of vaporisation of 37.7 kJ mol⁻¹. What is ΔS (in J K⁻¹ mol⁻¹) for the 2 vaporisation of isooctane? Answer:

• Consider the following reaction.

 $SO_2(g) + NO_2(g) \iff NO(g) + SO_3(g)$

At 460 °C this reaction has a value of $K_c = 85.0$. Suppose 0.100 mol of SO₂, 0.0600 mol of NO₂, 0.0800 mol of NO and 0.120 mol of SO₃ are placed in a 10.0 L container at this temperature. What are the concentrations of all of the gases when the system reaches equilibrium?

[SO ₂ (g)] =	[NO ₂ (g)] =
$[SO_3(g)] =$	[NO(g)] =

Consider the ammonia synthesis reaction $N_2(q) + 3H_2(q) \implies 2NH$	shown below. $K = 6.0 \times 10^{-2}$	2 at 500 °C
ΔH° for this reaction is -92 kJ mol ⁻¹ . Ca	Iculate the value of K_c at 200	°C.
	Answer:	
Explain why iron storage proteins are ne intracellularly and extracellularly within	cessary for the transport of iro the bloodstream at a pH of 7.4	n both 2

• An aqueous solution with a volume of 10.0 mL contains 0.025 g of a purified prote of unknown molecular weight. The osmotic pressure of the solution was measured an osmometer to be 0.0036 atm at 20.0 °C. Assuming ideal behaviour and no dissociation of the protein, estimate its molar mass.	in 3
Answer:	

 Sketch the titration curve (pH against mL of added base) when 25.0 mL of 0.010 M hydrofluoric acid (HF) with a pK_a of 3.17 is titrated with 0.010 M NaOH. Calculate the pH at the following four points: (i) before any NaOH is added; (ii) when half of the HF has been neutralised; (iii) at the equivalence point; and (iv) 50% beyond the equivalence point, <i>i.e.</i> when 1.5 times the equivalence volume has been added. 	Marks 8

objects.

Answer:

Give two reasons why the accuracy of radiocarbon dating is more uncertain for older

•	The ¹⁴ C specific activity of a tooth found in an archaeological dig is 0.34 Bq.
	The ¹⁴ C specific activity in living organisms is 15.3 Bq. How old is the tooth?

Marks 4

_	
	Why are positron emitters the best type of radioisotope to use for tomography?

2

• Explain the following terms or concepts.		Marks 3
a) Lipid bilayer		
b) Oxidation number		-
c) Electrolysis		
 How many minutes would be required to constant current of 0.17 A through a solut 	obtain 10.0 g of liquid mercury by passing a tion containing $Hg_2(NO_3)_2(aq)$?	2
		-
	A	-
With holen ad malan and in the	Answer:	-
• Write balanced nuclear equations for the Beta decay of nickel-66.	ionowing reactions.	2
Electron capture of selenium-72		
1		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

•	Write out the full name in standard notation of [Co(NH ₃) ₄ (SCN) ₂]Cl and draw all the	Ma
	possible isomers of the complex ion.	

Describe and contrast the nature of the chemical bonds:

(c) between $[Co(NH_3)_4(SCN)_2]$ and Cl in this compound.

(a) between N and H in NH₃;(b) between Co and NH₃; and

larks 7

Marks • The following chart shows the concentration of butyl chloride, C₄H₉Cl, as a function 4 of time when it reacts with water according to the following equation: $C_4H_9Cl(aq) + H_2O(l) \rightarrow C_4H_9OH(aq) + H^+(aq) + Cl^-(aq)$ 1.2 1.0 $[C_4H_9CI]$ (mmol L^{-1}) 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 800 time (s) Determine the instantaneous rate of reaction when $[C_4H_9Cl] = 1.0 \text{ mmol } L^{-1}$. Answer: Determine the instantaneous rate of reaction when $[C_4H_9Cl] = 0.5 \text{ mmol } L^{-1}$. Answer:

THIS QUESTION CONTINUES ON THE NEXT PAGE

What is the order of the reaction with respect to C ₄ H ₉ Cl?	Marks 4
	_
How long would be required for the concentration of C_4H_9Cl to reach 0.01 mmol L^{-1} ?	-
	-
	_
Answer:	_
• During lectures a demonstration was performed called the "One pot experiment". In this experiment, silver ions reacted with an alternating series of anions and ligands to form insoluble precipitates and soluble complexes. Explain how an insoluble precipitate can possibly be "dissolved" by the addition of ligands to the solution.	2
	-

CHEM1612 - CHEMISTRY 1B (PHARMACY)

DATA SHEET

Physical constants Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_p = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_n = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	mal fract	ions	Deci	mal multi	ples
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10 ³	kilo	k
10^{-6}	micro	μ	10 ⁶	mega	Μ
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р			

CHEM1612 - CHEMISTRY 1B (PHARMACY)

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(g) + 7H_2O$	+1.36
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$\mathrm{Cu}^+(\mathrm{aq}) + \mathrm{e}^- \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \to \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\mathrm{Cd}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$	-0.40
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2^+}(\operatorname{aq}) + 2e^- \to \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$\mathrm{Sc}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$	-2.09
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$\operatorname{Ca}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Ca}(s)$	-2.87
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04

Use	ful formulas
Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_w = pK_a + pK_b = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$
Radioactivity	Kinetics
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$
$A = \lambda N$	$k = A e^{-E_a/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
${}^{14}C \text{ age} = 8033 \ln(A_0/A_t) \text{ years}$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Colligative Properties & Solutions	Thermodynamics & Equilibrium
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
c = kp	$\Delta G^{\circ} = -RT \ln K$
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^\circ = R\ln K$
$\Delta T_{\rm b} = K_{\rm b} m$	$\ln\frac{K_2}{K_1} = \frac{-\Delta H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$
$\Delta T_{\rm b} = K_{\rm b} m$ Miscellaneous	$\ln \frac{K_2}{K_1} = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$ Mathematics
$\Delta T_{\rm b} = K_{\rm b}m$ Miscellaneous $A = -\log \frac{I}{I_0}$	$\ln \frac{K_2}{K_1} = \frac{-\Delta H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$ Mathematics If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$\Delta T_{\rm b} = K_{\rm b}m$ Miscellaneous $A = -\log \frac{I}{I_0}$ $A = \varepsilon cl$	$\ln \frac{K_2}{K_1} = \frac{-\Delta H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$ Mathematics If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ ln $x = 2.303 \log x$
$\Delta T_{b} = K_{b}m$ Miscellaneous $A = -\log \frac{I}{I_{0}}$ $A = \varepsilon cl$ $E = -A - \frac{e^{2}}{I_{0}} N_{b}$	$\ln \frac{K_2}{K_1} = \frac{-\Delta H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$ Mathematics If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ ln $x = 2.303 \log x$ Area of circle $= \pi r^2$

CHEM1612 - CHEMISTRY 1B (PHARMACY)

1	2	3	4	5	6	7	8	9	10	11	1	2	13	14	15	16	17	18
1 нуdrogen Н 1.008																		2 нелим Не 4.003
3	4												5	6	7	8	9	10
Linnow	Be												BORON	CARBON	NIROGEN	O	F	Ne
6.941	9.012												10.81	12.01	14.01	16.00	19.00	20.18
11 sodium	12 magnesium												13 ALUMINIUM	14 SILICON	15 PHOSPHORUS	16 SULFUR	17 CHLORINE	18 Argon
Na	Mg												Al	Si	Р	S	Cl	Ar
22.99	24.31		r	1	1				r	1			26.98	28.09	30.97	32.07	35.45	39.95
19 POTASSIUM	20 CALCIUM	21 scandium	22 TITANIUM	23 VANADIUM	24 CHROMIUM	25 manganese	26	27 COBALT	28 NICKEL	29	3	0	31 gallium	32 germanium	33 ARSENIC	34 SELENIUM	35 bromine	36 KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Z	n	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.	.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	4	8	49	50	51	52	53	54
Rb	SRONHUM	YIRIOM	Zr	Nobility	MOLYBDENUM	Тс	Ru	Rhobiom	PALLADIOM		CADA	d	India	Sn	Sb	Те	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.8	7 112	.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	8	0	81	82	83	84	85	86
CAESIUM	BARIUM		HAFNIUM Hf	Таптации	TUNGSTEN W	RHENIUM		IRIDIUM	PLATINUM Pt		H	ORY 9	THALLIUM TI	Pb	BISMUTH	POLONIUM	ASTATINE	RADON
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.9	7 200	.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	105	106	107	108	109	110	111	11	2						
Francium	Ra		R	DBNIOM DOBNIOM	Seaborgium	Bh	HASSIUM	MEINERIUM	DARMSTADIICM	ROENIGEN		n						
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]	[28	33]						
	5	7	58	59	60	61	62	63	64	1	65		66	67	68	69	70	71
LANTHAN	DID LANTE	ANUM C		PRASEODYMIUM Dr	NEODYMIUM Nd	PROMETHIUM Pm	SAMARIUM	EUROPIU	M GADOLI	NUM d	TERBIUM Th	DYS	PROSIUM	HOLMUM	erbium Fr	THULIUM Tm	VTTERBIUM Vh	LUTETIUM T 11
5	138	.91 14	40.12	140.91	144.24	[144.9]	150.4	151.9	6 157.	.25	158.93	16	52.50	164.93	167.26	168.93	173.04	174.97
	8	9	90	91 protactinium	92 URANIUM	93 NEPTUNIUM	94	95	96 M CUR	5	97 ERKELLIUM	CALL	98 FORNIUM	99 EINSTEINIUM	100 FERMIUM	101 MENDELEVIUM	102	103

Bk

[247.1]

Cm

[247.1]

Am

[243.1]

Cf

[252.1]

Es

[252.1]

Fm

[257.1]

Md

[256.1]

U

238.03

Pa

[231.0]

Th

232.04

Ac

[227.0]

Np [237.0]

Pu

[239.1]

ACTINOIDS

PERIODIC TABLE OF THE ELEMENTS

No

[259.1]

Lr

[260.1]